งานวิจัย


เป้าหมาย

ปัญหาโดยทั่วไปของการจำลอง (หรือสร้าง) ปัญญาถูกแบ่งออกเป็นปัญหาย่อย ๆ จำนวนมาก นักวิจัยด้านปัญญาประดิษฐ์พยายามศึกษาระบบย่อย ๆ เหล่านี้ โดยที่ได้รับความสนใจมากเป็นพิเศษ ได้แก่

การนิรนาม การให้เหตุผล และการแก้ไขปัญหา (deduction, reasoning, problem solving)

งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรก ๆ นั้นเริ่มต้นมาจากการให้เหตุผลแบบทีละขั้น ๆ เป็นการให้เหตุผลแบบเดียวกับที่มนุษย์ใช้ในการไขปัญหาหรือหาข้อสรุปทางตรรกศาสตร์ เมื่อปลายคริสต์ทศวรรษ 1980 และ 1990 งานวิจัยด้านปัญญาประดิษฐ์ได้ถูกพัฒนาอย่างต่อเนื่อง และประสบความสำเร็จในการจัดการกับความไม่แน่นอนหรือความไม่สมบูรณ์ของข้อมูลได้ โดยใช้หลักการของความน่าจะเป็นและเศรษฐศาสตร์
ความยากของสาขานี้คือ อัลกอริทึมส่วนใหญ่ต้องใช้การคำนวณและประมวลผลมหาศาล มักจะเป็นการคำนวณแบบสลับสับเปลี่ยนจำนวนมาก และทำให้คอมพิวเตอร์ต้องใช้หน่วยความจำมหาศาลเมื่อต้องแก้ปัญหาที่มีขนาดใหญ่มาก ดังนั้น งานวิจัยในสายนี้จึงมักมุ่งเน้นการหาอัลกอริทึมที่มีประสิทธิภาพในการค้นหาอย่างมีประสิทธิภาพ
มนุษย์มีความสามารถในการไขปัญหาอย่างรวดเร็ว สามารถตัดสินใจได้ตามสัญชาติญาณและมีความรวดเร็วกว่าความรู้สึกตามสามัญสำนึกและการอนุมานแบบทีละขั้นแบบที่งานวิจัยด้านปัญญาประดิษฐ์ในช่วงแรกทำได้ ปัจจุบัน งานวิจัยด้านปัญญาประดิษฐ์เริ่มหันมาให้ความสนใจการแก้ไขปัญหาที่ย่อยไปกว่าเชิงสัญลักษณ์ หรือที่เรียกว่า sub-symbolic problem solving ไม่ว่าจะเป็น เอเยนต์ฝังตัว โครงข่ายประสาทเทียม หรือการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เพื่อเลียนแบบธรรมชาติของมนุษย์ในการเดาอย่างมีหลักการทางความน่าจะเป็น
เทคนิคที่นิยมใช้กันมากก็คือ การเขียนโปรแกรมเชิงตรรกะ (logic programming) เมื่อเราแทนความรู้ของเครื่องด้วย first-order logic และ bayesian inference เมื่อเราแทนความรู้ของเครื่องด้วย bayesian networks

การแทนความรู้

การแทนความรู้ (knowledge representation) เป็นหัวใจสำคัญของงานวิจัยด้านปัญญาประดิษฐ์ เป็นการศึกษาด้านเก็บความรู้ (knowledge) ไว้ในเครื่องจักร เราเชื่อกันว่าหากจะให้เครื่องจักรแก้ไขปัญหาให้จะต้องใช้ความรู้จำนวนมหาศาลบนโลกนี้ สิ่งที่ปัญญาประดิษฐ์ต้องการจะหาสัญลักษณ์มาแทนได้แก่ วัตถุ คุณสมบัติ ประเภท ความสัมพันธ์ระหว่างวัตถุ ไม่ว่าจะเป็นสถานการณ์ เหตุการณ์ สถานะ และเวลา ตลอดจนเหตุและผล ความรู้เกี่ยวกับความรู้ (รู้ว่าคนอื่นรู้อะไร) และอื่น ๆ อีกมากมาย การแทน"สิ่งที่มีอยู่"นั้นเรียกว่าสาขาภววิทยา เป็นการแทนที่กลุ่มของวัตถุ ความสัมพันธ์ แนวคิด และอื่น ๆ บนเครื่องจักร ประเด็นสำคัญของการแทนความรู้ คือ
  • ทำอย่างไรจะแสดงความรู้ได้อย่างกะทัดรัด ประหยัดหน่วยความจำ
  • จะนำความรู้ที่เก็บไว้นี้ไปใช้ในการให้เหตุผลอย่างไร
  • จะมีการเรียนรู้ความรู้ใหม่ ๆ ด้วยเทคนิคการเรียนรู้ของเครื่อง ให้ความรู้ที่ได้อยู่ในรูปแบบความรู้ที่เราออกแบบไว้ได้อย่างไร
การแทนความรู้สามารถแบ่งออกได้เป็นสองประเภทหลัก คือ

ระบบผู้เชี่ยวชาญ

ระบบผู้เชี่ยวชาญ (expert system) เป็นการศึกษาเรื่องสร้างระบบความรู้ของปัญหาเฉพาะอย่าง เช่น การแพทย์หรือวิทยาศาสตร์ จุดประสงค์ของระบบนี้คือ ทำให้เสมือนมีมนุษย์ผู้เชี่ยวชาญคอยให้คำปรึกษา และคำตอบเกี่ยวกับปัญหาต่าง ๆ งานวิจัยด้านนี้มีจุดประสงค์หลักว่า เราไม่ต้องพึ่งมนุษย์ในการแก้ปัญหา แต่อย่างไรก็ตามในทางปฏิบัติแล้ว ระบบผู้เชี่ยวชาญยังต้องพึ่งมนุษย์เพื่อให้ความรู้พื้นฐานในช่วงแรก การจะทำงานวิจัยเรื่องนี้ต้องอาศัยความรู้พื้นฐานหลายเรื่อง ไม่ว่าจะเป็น การแทนความรู้การให้เหตุผล และ การเรียนรู้ของเครื่อง

การวางแผนของเครื่อง (automated planning)

เอเยนต์ฉลาดจะต้องมีความสามารถในการตั้งเป้าหมายและบรรลุเป้าหมายได้เอง จะต้องมีวิธีการนึกภาพของอนาคต (จะต้องสามารถมองเห็นสถานะต่าง ๆ บนโลกและสามารถคาดการณ์ได้ว่าโลกจะเปลี่ยนไปอย่างไรได้) และสามารถที่จะตัดสินใจเลือกทางเลือกที่มีประโยชน์ (หรือมีค่า) มากที่สุดได้
ในปัญหาการวางแผนแบบยุคเก่านั้น เอเยนต์จะมีข้อสมมติฐานว่าเอเยนต์เป็นวัตถุเดียวที่มีการกระทำบนโลก แต่อย่างไรก็ตาม หากเอเยนต์ไม่ได้เป็นเพียงวัตถุเดียวที่มีการกระทำ เอเยนต์จะต้องสืบให้แน่ใจอย่างซ้ำ ๆ ว่าโลกนั้นตรงกับตามที่คาดการณ์ไว้หรือไม่ และจะต้องเปลี่ยนแปลงแผนที่วางไว้อย่างไร ทำให้เอเยนต์ยุคใหม่นี้จะต้องจัดการกับความไม่แน่นอนด้วย
ปัจจุบัน ได้มีงานวิจัยสาขาการวางแผนของเอเยนต์หลายตัว ที่อาศัยความร่วมมือและการแข่งขันของเอเยนต์หลาย ๆ ตัวเพื่อให้บรรลุเป้าหมายที่กำหนดไว้ โดยใช้วิธีการที่มีประสิทธิภาพอย่างขั้นตอนวิธีเชิงวิวัฒนาการหรือความฉลาดแบบกลุ่ม

การเรียนรู้ของเครื่อง

การเรียนรู้ของเครื่อง (machine learning) เป็นการศึกษาอัลกอริทึมคอมพิวเตอร์ที่ขั้นตอนวิธีจะถูกปรับปรุงอย่างอัตโนมัติผ่านการเรียนรู้จากประสบการณ์ เป็นหัวใจหลักของงานวิจัยด้านปัญญาประดิษฐ์นับตั้งแต่มีการก่อตั้งสาขานี้มา
การเรียนรู้แบบไม่มีผู้สอน (unsupervised learning) เป็นความสามารถในการหาแบบแผนบางอย่างจากข้อมูลที่เข้ามา ส่วนการเรียนรู้แบบมีผู้สอน (supervised learning) นั้นหมายถึงการแบ่งประเภทข้อมูลและการวิเคราะห์การถดถอยเชิงตัวเลข ปัญหาการแบ่งประเภทของข้อมูลนั้นใช้เพื่อกำหนดว่าของชิ้นใหม่ชิ้นหนึ่งจัดอยู่ในกลุ่มประเภทใดหลังจากที่ได้เรียนรู้ตัวอย่างสอนที่ระบุว่าของแต่ละอย่างควรจะอยู่ในประเภทใดมาแล้ว ส่วนการวิเคราะห์การถดถอยนั้นพยายามจะสร้างฟังก์ชันทางคณิตศาสตร์ที่อธิบายความสัมพันธ์ระหว่างข้อมูลขาเข้ากับข้อมูลขาออก และทำนายว่าข้อมูลขาออกควรจะเปลี่ยนไปอย่างไรเมื่อข้อมูลขาเข้าเปลี่ยนแปลง ในการเรียนรู้แบบเสริมกำลัง (reinforcement learning) นั้น เอเยนต์จะได้รับรางวัลหากมีการตอบสนองที่ดีและถูกลงโทษหากมีการตอบสนองที่ไม่ดี เอเยนต์จะเรียนรู้จากรางวัลและการลงโทษนี้ในการสร้างกลยุทธ์เพื่อแก้ไขปัญหาต่าง ๆ การเรียนรู้ทั้งสามแบบนี้สามารถวิเคราะห์ได้ด้วยทฤษฎีการตัดสินใจ (decision theory) โดยใช้แนวคิดของประโยชน์ การวิเคราะห์ทางคณิตศาสตร์ของอัลกอริทึมทางการเรียนรู้ของเครื่องจักรและการวิเคราะห์ประสิทธิภาพของอัลกอริทึมนั้นเป็นอีกหนึ่งสาขาทางด้านวิทยาการคอมพิวเตอร์สายทฤษฎี การเรียนรู้ของเครื่องจักรถือว่าเป็นหัวใจสำคัญของการพัฒนาหุ่นยนต์เช่นกัน ทำให้หุ่นยนต์มีทักษะใหม่ ๆ ได้ ผ่านการสำรวจด้วยตนเอง การติดต่อกับผู้สอนที่เป็นมนุษย์ การเลียนแบบ และอื่น ๆ

การประมวลผลภาษาธรรมชาติ

การประมวลผลภาษาธรรมชาติ (natural language processing) คือการทำให้เครื่องมีความสามารถที่จะอ่านและเข้าใจภาษาที่มนุษย์พูดในชีวิตประจำวัน ระบบที่สามารถประมวลผลภาษาธรรมชาติได้มีประสิทธิภาพเพียงพอจะทำให้เรามีส่วนติดต่อกับผู้ใช้ที่ใช้ภาษาธรรมชาติ และหาความรู้ได้โดยตรงจากแหล่งข้อมูลที่มนุษย์เขียน เช่น หนังสือพิมพ์ นอกจากนี้ยังสามารถนำไปประยุกต์ใช้ได้โดยตรงกับการค้นข้อมูล (หรือการทำเหมืองข้อความ) การตอบคำถาม และการแปล
วิธีการโดยทั่วไปของการประมวลผลและดึงเอาความหมายมาจากธรรมชาติ คือ การทำดัชนีความหมาย นอกจากนี้ การเพิ่มความเร็วในการประมวลผลและลดขนาดของข้อมูลที่จะจัดเก็บก็ทำให้การค้นหาดัชนีจากฐานข้อมูลขนาดใหญ่มีประสิทธิภาพมากยิ่งขึ้น

การรับรู้ของเครื่อง

การรับรู้ของเครื่อง (machine prception) คือ ความสามารถในการอ่านข้อมูลขาเข้าจากเซนเซอร์ (เช่น กล้อง ไมโครโฟน เซนเซอร์สัมผัส โซนาร์ หรืออื่น ๆ ) เพื่อจะเข้าใจบริบทของโลกภายนอก ตัวอย่างของงานวิจัยด้านนี้ ได้แก่

การเคลื่อนไหวและการจัดการ (motion and manipulation)


สาขาวิทยาการหุ่นยนต์มีความคล้ายคลึงกับสาขาปัญญาประดิษฐ์ หุ่นยนต์ต้องการความฉลาดเพื่อจัดการกับสิ่งต่าง ๆ เช่น การจัดการวัตถุ ระบบนำทาง การแก้ปัญหาย่อยเช่นการหาที่อยู่ตัวเองหรือหาที่อยู่ของสิ่งอื่น ๆ การทำแผนที่ การวางแผนการเคลื่อนไหวหรือเส้นทาง

เป้าหมายระยะยาว

เป้าหมายระยะยาวของปัญญาประดิษฐ์ ได้แก่ ความฉลาดทางสังคม ความคิดสร้างสรรค์ และความฉลาดทั่วไป

ความฉลาดทางสังคม (social intelligence)

การคำนวณเชิงอารมณ์ (affective computing) คือ การศึกษาและพัฒนาระบบและเครื่องมือที่สามารถรู้จำ แปรผล ประมวลผล และจำลองอารมณ์ความรู้สึกของมนุษย์ได้ เป็นสหสาขาวิชาที่เกี่ยวข้องกับวิทยาการคอมพิวเตอร์ จิตวิทยา และประชานศาสตร์ สาขานี้เริ่มต้นจากความต้องการทางปรัชญาที่อยากจะเข้าถึงอารมณ์ของมนุษย์ สาขาการคำนวณเชิงอารมณ์สมัยใหม่นี้เริ่มจากคำนิยามของ โรซาไลนด์ พิการ์ด นักวิทยาศาสตร์คอมพิวเตอร์ที่ MIT ที่เริ่มใช้คำนี้ในผลงานวิจัยปี ค.ศ. 1995 เกี่ยวกับการคำนวณเชิงอารมณ์ แรงบันดาลใจของงานวิจัยสายนี้คือความต้องการที่จะจำลองความเข้าใจความรู้สึกของคนอื่นของมนุษย์ ต้องการมีเครื่องจักรที่สามารถแปลผลสถานะของอารมณ์ของมนุษย์และปรับเปลี่ยนพฤติกรรมให้ตอบสนองกับอารมณ์นั้น ๆ ของมนุษย์อย่างเหมาะสม
อารมณ์และทักษะทางสังคมมีบทบาทสำคัญต่อการพัฒนาความฉลาดของเครื่องจักร ก่อนอื่น เครื่องจักรจะต้องทำนายการกระทำของคนอื่น ผ่านทางการเข้าใจจุดมุ่งหมายและสถานะของอารมณ์ผู้อื่น (ส่วนนี้มีความเกี่ยวข้องกับทฤษฎีเกม ทฤษฎีการตัดสินใจ ตลอดจนความสามารถในการสร้างแบบจำลองอารมณ์ของมนุษย์ และความสามารถในการตรวจจับอารมณ์ผู้อื่นของมนุษย์) นอกจากนี้ ในการสร้างปฏิสัมพันธ์ระหว่างมนุษย์และคอมพิวเตอร์ที่ดีนั้น เครื่องจักรที่ฉลาดควรจะแสดงอารมณ์ออกมาด้วย แม้ว่าอารรมณ์นั้นจะไม่ได้เป็นอารมณ์ที่ตนรู้สึกจริง ๆ ก็ตาม

ความคิดสร้างสรรค์ (computational creativity)

สาขาย่อยของปัญญาประดิษฐ์สาขาหนึ่งต้องการจะสร้างความคิดสร้างสรรค์ ทั้งทางทฤษฎี (ในมุมมองทางปรัชญาและจิตวิทยา) และทางปฏิบัติ (ผ่านทางประยุกต์ใช้ระบบที่ให้ผลลัพธ์ที่ดูคล้ายความคิดสร้างสรรค์ หรือระบบที่สามารถตรวจจับและประเมินความคิดสร้างสรรค์ได้)

ความฉลาดทั่วไป (general intelligence)

นักวิจัยทางปัญญาประดิษฐ์หลายคนเชื่อว่า สุดท้ายแล้ว งานวิจัยต่าง ๆ จะถูกรวมเข้าสู่เครื่องจักรกลายเป็นความฉลาดแบบทั่วไป (บางครั้งก็เรียกว่า ปัญญาประดิษฐ์แบบแข็ง (String AI)) เป็นการรวมเอาทักษะต่าง ๆ เข้าด้วยกันและมีความสามารถมากกว่ามนุษย์ทุกคน นักวิจัยบางคนเชื่อว่าความฉลาดแบบนี้จะต้องมีคุณลักษณะทางมานุษยรูปนิยมบางอย่าง เช่น สำนึกประดิษฐ์ หรือ สมองประดิษฐ์
การวิจัยความฉลาดทั่วไปนั้นจะต้องแก้ปัญหาหลายอย่าง ตัวอย่างเช่น การแปลความหมายโดยเครื่องนั้นจะต้องให้เครื่องอ่านและเขียนข้อมูลภาษาธรรมชาติได้ทั้งสองภาษา ให้เหตุผล และรู้ว่ากำลังพูดถึงเรื่องอะไรกันอยู่ (การแทนความรู้) รวมทั้งจะต้องมีรู้ความตั้งใจของผู้เขียน (ความฉลาดทางสังคม) กล่าวคือ การแก้ปัญหาทางการวิจัยความฉลาดทั่วไปนั้น จะต้องแก้ปัญหาทางปัญญาประดิษฐ์หลาย ๆ อย่างไปพร้อม ๆ กัน

วิธีการ

ปัจจุบัน ยังไม่มีทฤษฎีหรือกระบวนทัศน์ใด ๆ ที่เป็นแนวทางที่ชัดเจนให้กับการวิจัยทางปัญญาประดิษฐ์ นักวิจัยบางคนก็ไม่เห็นด้วยกับบางเรื่อง ปัญหาที่ยังไม่มีคำตอบก็ยังมีอยู่มากมาย เช่น ปัญญาประดิษฐ์ควรจะมีพฤติกรรมคล้ายกับของจริงในธรรมชาติในทางจิตวิทยาหรือประสาทวิทยาหรือไม่ หรือ ชีววิทยาของร่างกายมนุษย์นั้นไม่ได้สัมพันธ์อะไรกับปัญญาประดิษฐ์แบบที่นกไม่ได้สัมพันธ์ใด ๆ กับอากาศยานหรือไม่ หรือ พฤติกรรมที่ฉลาดสามารถอธิบายได้ด้วยหลักการที่ง่าย ๆ ธรรมดา ๆ เช่นในทางตรรกะได้หรือไม่ หรือ เราจำเป็นหรือไม่ที่จะต้องแก้ปัญหาที่ไม่เกี่ยวข้องให้ครบ หรือ ความฉลาดสามารถถูกสร้างขึ้นมาโดยใช้สัญลักษณ์ขั้นสูงอย่างคำหรือแนวความคิดได้หรือไม่และจำเป็นจะต้องมีการประมวลผลสัญลักษณ์ที่ย่อยไปกว่านั้นหรือไม่

ไซเบอร์เนติกส์และการจำลองสมอง (cybernetics and brain simulation)

ในคริสต์ทศวรรษ 1940 และ 1950 นักวิทยาศาสตร์หลายคนพยายามจะหาความเชื่อมโยงระหว่างประสาทวิทยา ทฤษฎีสารสนเทศ และไซเบอร์เนติกส์ นักวิจัยบางคนได้สร้างเครือข่ายอิเล็กทรอนิกส์ขึ้นมาเพื่อสร้างความฉลาดขั้นต้นขึ้นมา ปัจจุบันวิธีการนี้ได้ถูกล้มเลิกไปแล้ว

สัญลักษณ์

หลังจากที่เริ่มมีความเป็นไปได้ที่จะสร้างเครื่องคอมพิวเตอร์ดิจิทัลขึ้นในราวคริสต์ทศวรรษ 1950 นักวิจัยทางปัญญาประดิษฐ์หลายคนก็เริ่มศึกษาดูความเป็นไปได้ที่จะลดรูปความฉลาดของมนุษย์ให้อยู่ในรูปสัญลักษณ์และการจัดการกับสัญลักษณ์ต่าง ๆ ศูนย์กลางของการวิจัยสาขานี้อยู่ที่มหาวิทยาลัยคาร์เนกีเมลลอน มหาวิทยาลัยสแตนฟอร์ด และสถาบันเทคโนโลยีแมสซาชูเซตส์ แต่ละมหาวิทยาลัยได้สร้างแนวทางการวิจัยเป็นของตัวเอง จอห์น ฮากแลนด์ตั้งชื่อหลักการเหล่านี้ว่า GOFAI (Good Old-Fashioned Artificial Intelligence) หรือปัญญาประดิษฐ์ในรูปแบบเก่า ต่อมาในช่วงคริสต์ทศวรรษ 1960 งานวิจัยโดยการแทนสัญลักษณ์นี้เริ่มประสบความสำเร็จในการจำลองความคิดชั้นสูงของมนุษย์ในบางโปรแกรม หลังจากที่วิธีการที่ใช้ไซเบอร์เนติกส์หรือโครงข่ายประสาทเทียมถูกล้มเลิกไป นักวิจัยในช่วงคริสต์ทศวรรษ 1960 และ 1970 หันมาใช้หลักการทางสัญลักษณ์เพราะเชื่อว่าวิธีการนี้จะประสบความสำเร็จในการสร้างปัญญาประดิษฐ์ทั่วไปที่เชื่อว่าเป็นเป้าหมายของงานวิจัยสาขานี้
  • การจำลองการรับรู้ (cognitive simulation)
นักเศรษฐศาสตร์อย่างเฮอร์เบิร์ต ไซมอนและอัลเลน นิวเวลล์ได้ศึกษาทักษะการแก้ปัญหาของมนุษย์และพยายามทำให้มีระเบียบแบบแผน งานวิจัยของทั้งสองคนได้กลายมาเป็นจุดเริ่มต้นของสาขาของปัญญาประดิษฐ์ที่เรียกว่า วิทยาศาสตร์พุทธิปัญญา การวิจัยดำเนินการ และวิทยาการจัดการในเวลาต่อมา งานวิจัยสายนี้ใช้ผลจากการทดลองทางจิตวิทยาในการพัฒนาโปรแกรมที่สามารถจำลองเทคนิคที่คนใช้เพื่อแก้ปัญหาได้ วิธีการเหล่านี้มีจุดเริ่มต้นที่มหาวิทยาลัยคาร์เนกีเมลลอน
  • วิธีการเชิงตรรกะ (logic-based)
จอห์น แม็กคาร์ธีย์ ใช้วิธีการที่แตกต่างไปจากวิธีของนิวเวลล์และไซมอน โดยรู้สึกว่าเครื่องจักรไม่จำเป็นต้องจำลองการคิดของมนุษย์ แต่ควรจะพยายามหาแก่นของการให้เหตุผลเชิงนามธรรมและการแก้ปัญหา ไม่ต้องสนใจว่าแต่ละคนจะใช้อัลกอรึทึมเดียวกันหรือไม่ ห้องปฏิบัติการวิจัยของเขาที่มหาวิทยาลัยสแตนฟอร์ดเน้นเรื่องของการใช้ตรรกะบัญญัติ (formal logic) ในการแก้ปัญหาต่าง ๆ ไม่ว่าจะเป็นการแทนความรู้ การวางแผน และการเรียนรู้ นอกจากนี้ มหาวิทยาลัยเอดินบะระและอีกหลายแห่งในยุโรปก็หันมาให้ความสนใจด้านการพัฒนาโปรแกรมเชิงตรรกะเช่นกัน ไม่ว่าจะเป็นภาษาโปรล็อกหรือการเขียนโปรแกรมเชิงตรรกะ
  • วิธีการไม่ใช้ตรรกะ (anti-logic)
ในขณะเดียวกัน นักวิจัยที่สถาบันเทคโนโลยีแมสซาชูเซตส์ (เช่น มาร์วิน มินสกี และเซย์มัวร์ เพเพิร์ต) พบว่า การแก้ไขปัญหาบางอย่าง เช่น คอมพิวเตอร์วิทัศน์และการประมวลผลภาษาธรรมชาติจำเป็นต้องมีวิธีการที่ไม่จำเป็นต้องเตรียมล่วงหน้า นักวิจัยได้อ้างว่า ไม่มีหลักการที่ง่ายหรือหลักการทั่วไป (อย่างเช่นตรรกะ) ที่จะจับต้องพฤติกรรมความฉลาดของสิ่งมีชีวิตได้ โรเจอร์ แชงก์ ได้ตั้งชื่อว่า หลักการแอนตีลอจิก หรือหลักการ"ไม่เรียบร้อย" (เพื่อให้ตรงข้ามกับความมีระเบียบเรียบร้อยที่คาร์เนกีเมลลอนและสแตนฟอร์ด) ตัวอย่างของงานวิจัยสายนี้เช่น ฐานความรู้เกี่ยวกับสามัญสำนึก อันเป็นแนวคิดที่ค่อนข้างซับซ้อนในวงการปัญญาประดิษฐ์สมัยนั้น
  • วิธีการเชิงความรู้ (knowledge-based)
เมื่อคอมพิวเตอร์เริ่มมีความจำที่ใหญ่ขึ้นตั้งแต่ออกสู่ตลาดเมื่อราวปี ค.ศ. 1970 นักวิจัยจากมหาวิทยาลัยเริ่มต้น 3 แห่งเริ่มหันมาสร้างความรู้สำหรับปัญญาประดิษฐ์ แนวคิดที่เปลี่ยนวงการนี้นำไปสู่การพัฒนาและการใช้ระบบผู้เชี่ยวชาญ และเป็นรูปแบบของซอฟต์แวร์ปัญญาประดิษฐ์แบบแรกที่ประสบความสำเร็จอย่างแท้จริง การปฏิวัติวงการดังกล่าวนี้ได้รับแรงขับเคลื่อนมาจากแนวคิดที่ว่า การนำปัญญาประดิษฐ์ไปประยุกต์ใช้นั้นจำเป็นจะต้องมีความรู้ในปริมาณมหาศาล

สัญลักษณ์ย่อย (sub-symbolic)

หลังจากวิธีการเชิงสัญลักษณ์ทางด้านปัญญาประดิษฐ์เริ่มหยุดชะงักในคริสต์ทศวรรษ 1980 นักวิจัยหลายคนก็เชื่อว่าระบบเชิงสัญลักษณ์ไม่น่าจะสามารถเลียนแบบกระบวนการที่เกี่ยวข้องกับสติปัญญาของมนุษย์ได้ โดยเฉพาะการรับรู้ วิทยาการหุ่นยนต์ การเรียนรู้ และการรู้จำแบบ นักวิจัยหลายคนได้เสนอหลักการของ"สัญลักษณ์ย่อย"กับปัญหาทางปัญญาประดิษฐ์บางปัญหา
  • วิธีการจากล่างขึ้นบน (bottom-up)
นักวิจัยจากสาขาที่เกี่ยวข้องกับวิทยาการหุ่นยนต์ อาทิ รอดนีย์ บรูกส์ ปฏิเสธที่จะใช้ปัญญาประดิษฐ์เชิงสัญลักษณ์และหันมาใช้วิธีการทางวิศวกรรมที่จะทำให้หุ่นยนต์เคลื่อนไหวและอยู่รอดได้ งานวิจัยรูปแบบใหม่ในมุมมองแบบไม่อิงสัญลักษณ์นี้ทำให้งานวิจัยเชิงไซเบอร์เนติกส์ในยุค 1950 กลับมาอีกครั้ง และก่อให้เกิดการใช้ทฤษฎีควบคุมในสาขาปัญญาประดิษฐ์ขึ้น นอกจากนี้ ยังมีงานวิจัยพัฒนา"จิตใจฝังตัว"ในสาขาของ cognitive science ที่อ้างอิงแนวคิดที่ว่า ความฉลาดชั้นสูงนั้นล้วนเป็นส่วนประกอบมาจากร่างกายส่วนล่าง (เช่น การเคลื่อนไหว การรับรู้ และการมองเห็นภาพ) ทั้งนั้น
  • ความฉลาดด้านการคำนวณ หรือการคำนวณแบบอ่อน (computational intelligence and soft computing)
กลางคริสต์ทศวรรษ 1980 เดวิด รูเมลฮาร์ต และนักวิจัยกลุ่มอื่นชุบชีวิตของสาขาโครงข่ายประสาทเทียมและศาสตร์การเชื่อมต่อขึ้นมาอีกครั้ง โครงข่ายประสาทเทียมถือเป็นตัวอย่างหนึ่งของการคำนวณแบบอ่อน อันเป็นวิธีการแก้ไขปัญหาที่แก้ไม่ได้ด้วยการใช้ความแน่นอนทางตรรกะ แต่สามารถแก้ได้โดยใช้การประมาณคำตอบที่แม่นยำเพียงพอ หลักการอื่น ๆ ของการคำนวณแบบอ่อน ได้แก่ ระบบคลุมเคลือ (fuzzy system) การคำนวณเชิงวิวัฒนาการ (evolutionary computation) และวิธีการอื่น ๆ ทางสถิติ

วิธีการทางสถิติ

ในคริสต์ทศวรรษ 1990 นักวิทยาศาสตร์ด้านปัญญาประดิษฐ์ได้พัฒนาเครื่องมือทางคณิตศาสตร์ที่มีประสิทธิภาพในการแก้ไขปัญหาย่อยบางอย่างได้ เครื่องมือเหล่านี้มีความเป็นวิทยาศาสตร์มากในแง่ที่ว่า ผลสามารถวัดและประเมินได้อย่างชัดเจน จนเป็นหัวใจสำคัญของปัญญาประดิษฐ์ในยุคหลังนี้ เนื่องจากวิธีการนี้ตั้งอยู่บนพื้นฐานของคณิตศาสตร์ จึงนำไปปรับใช้หรือพัฒนาร่วมกับหลักการในสาขาอื่น ๆ ได้ง่าย เช่น คณิตศาสตร์ เศรษฐศาสตร์ หรือการวิจัยดำเนินการ นักวิทยาศาสตร์ชื่อสจวร์ต รัสเซลล์และปีเตอร์ นอร์วิกอธิบายวิธีการนี้ไว้ว่าเป็น "การปฏิวัติ" และ "ความสำเร็จของความเป็นระเบียบ" อย่างไรก็ตาม ก็มีหลายคนที่ไม่เห็นด้วยกับเทคนิคเหล่านี้โดยชี้ว่า เทคนิคเหล่านี้มีความเฉพาะเจาะจงกับบางปัญหามากเกินไป และไม่สามารถบรรลุเป้าหมายระยะยาวในการสร้างความฉลาดทั่วไปได้ ปัจจุบันยังมีการถกเถียงกันอยู่เรื่องความเกี่ยวข้องและความถูกต้องของการใช้หลักการทางสถิติกับปัญญาประดิษฐ์ เช่น การถกเถียงกันระหว่างปีเตอร์ นอร์วิกกับโนม ชัมสกี

วิธีผสมผสาน

เอเยนต์ทรงปัญญา คือ ระบบที่สามารถรับรู้สิ่งแวดล้อมรอบข้างได้และเลือกปฏิบติตามวิธีที่มีโอกาสประสบความสำเร็จมากที่สุด เอเยนต์ทรงปัญญาในรูปแบบที่ง่ายที่สุดคือโปรแกรมที่สามารถแก้ไขปัญหาบางอย่างได้ ส่วนเอเยนต์ที่ซับซ้อนกว่านั้นก็ได้แก่มนุษย์และการรวมกลุ่มของมนุษย์ มุมมองนี้ทำให้นักวิจัยสามารถศึกษาปัญหาแบบแยกเฉพาะส่วนและหาคำตอบที่มีประโยชน์และถูกต้องได้โดยไม่ต้องมีเป้าหมายรวมกันเพียงเป้าหมายเดียว เอเยนต์จะต้องแก้ปัญหาเฉพาะอย่างปัญหาหนึ่งได้โดยการใช้วิธีการที่ได้ผล เอเยนต์บางเอเยนต์อาจจะใช้วิธีการทางสัญลักษณ์ หรือบางตัวอาจจะใช้วิธีการทางตรรกะ โครงข่ายประสาทเทียม หรือวิธีการอื่น ๆ แนวความคิดนี้ทำให้นักวิจัยสามารถสื่อสารกับสาขาอื่นได้ ไม่ว่าจะเป็นด้านเศรษฐศาสตร์หรือด้านทฤษฎีการตัดสินใจที่ใช้แนวคิดของเอเยนต์นามธรรมเช่นกัน แนวคิดเรื่องเอเยนต์ทรงปัญญานี้ได้รับการยอมรับเป็นวงกว้างนับตั้งแต่คริสต์ทศวรรษ 1990
นักวิจัยได้ออกแบบระบบเพื่อสร้างระบบฉลาดที่สามาาถติดต่อกับเอเยนต์ได้ผ่านทางระบบเอเยนต์หลายตัว ระบบดังกล่าวมีทั้งส่วนที่เป็นสัญลักษณ์และสัญลักษณ์ย่อย หรือเป็นระบบผสมผสาน (ไฮบริด) และการศึกษาระบบดังกล่าวนี้เรียกว่า การบูรณาการระบบปัญญาประดิษฐ์

เครื่องมือ

หลังจากปัญญาประดิษฐ์ได้มีการพัฒนาอย่างต่อเนื่องมากประมาณ 50 ปี ได้มีการพัฒนาเครื่องมือเพื่อใช้ในการแก้ไขปัญหาที่ยากในทางวิทยาการคอมพิวเตอร์ ตัวอย่างของวิธีการได้แก่

การค้นหาและการหาค่าที่เหมาะที่สุด (search and optimization)

ปัญหาทางปัญญาประดิษฐ์หลาย ๆ ปัญหาถูกแก้ในรูปแบบของทฤษฎีที่ว่าด้วยการค้นหาคำตอบจากคำตอบที่เป็นไปได้หลาย ๆ คำตอบ การให้เหตุผลสามารถเปลี่ยนรูปไปเป็นรูปแบบของการค้นหาได้ ตัวอย่างเช่น การพิสูจน์ทางตรรกะสามารถมองได้ว่าเป็นการค้นหาเส้นทางจากหลักฐานไปสู่ข้อสรุปได้ โดยผ่านขั้นตอนที่เรียกว่า การอนุมาน อัลกอริทึมทางวิทยาการหุ่นยนต์สำหรับการขยับข้อต่อและหยิบจับวัตถุก็ใช้วิธีการค้นหาสิ่งที่อยู่ภายในพื้นที่นั้น ๆ อัลกอริทึมทางด้านการเรียนรู้ของเครื่องหลาย ๆ อันก็ใช้วิธีการค้นหาบนคำตอบที่ดีที่สุด
อย่างไรก็ตาม การค้นหาแบบธรรมดานั้นไม่ค่อยจะเพียงพอสำหรับปัญหาในโลกจริง เพราะส่วนที่จะต้องค้นหานั้นมีขนาดใหญ่มหาศาล ทำให้การค้นหาเป็นไปได้ช้าหรือไม่สามารถทำให้เสร็จได้เลย หนึ่งในวิธีการแก้ปัญหาคือการใช้ค่าฮิวริสติกเพื่อตัดตัวเลือกที่ไม่น่าจะพาไปสู่เป้าหมายได้ (เรียกว่าวิธีการตัดกิ่งในต้นไม้ค้นหา) ค่าฮิวริสติกนี้ทำให้โปรแกรมสามารถเดาได้คร่าว ๆ ว่าเส้นทางไหนที่น่าจะพาไปสู่คำตอบ และช่วยทำให้ขนาดของตัวอย่างที่จะต้องค้นหาเล็กลงด้วย
การค้นหาเริ่มมีบทบาทเด่นชัดในคริสต์ทศวรรษ 1990 โดยใช้ทฤษฎีการหาค่าที่เหมาะสมที่สุดทางคณิตศาสตร์ ปัญหาหลาย ๆ อย่างก็สามารถเริ่มต้นการค้นหาได้ด้วยการเดาบางอย่าง จากนั้นก็ปรับวิธีการเดาไปเรื่อย ๆ จนกระทั่งไม่จำเป็นต้องปรับอีกแล้ว อัลกอริทึมเหล่านี้สามารถเรียกให้เห็นภาพได้ง่าย ๆ ว่าเป็นการปีนเขา โดยเริ่มจากการค้นหาที่จุดสุ่มในที่ราบ จากนั้นก็ค่อย ๆ กระโดดและไต่เขาขึ้นไปเรื่อย ๆ โดยใช้หลักการเดาว่าจุดไหนที่น่าจะทำให้เราปีนเขาขึ้นไป จนกระทั่งในที่สุดเราไปอยู่บนยอดสุดของภูเขา
การคำนวณเชิงวิวัฒนาการก็ใช้หลักการของการหาค้นหาค่าที่เหมาะที่สุดเช่นกัน ตัวอย่างเช่น เราอาจจะเริ่มต้นจากกลุ่มของสิ่งมีชีวิตกลุ่มหนึ่ง (สุ่มมา) จากนั้นก็ทำการวิวัฒนาการและผสมผสาน เลือกเอากลุ่มตัวอย่างที่ดีที่สุดเพื่ออยู่รอดต่อไปในรุ่น (การปรับการค้นหา) การคำนวณเชิงวิวัฒนาการมีหลายวิธี ได้แก่ ความฉลาดแบบกลุ่ม (swarm intelligence) หรือ ขั้นตอนวิธีเชิงวิวัฒนาการ (evolutionary algorithm) เช่น ขั้นตอนวิธีเชิงพันธุกรรม

ตรรกะ (logic)

ในการแทนความรู้และการแก้ปัญหานั้นมีการใช้ตรรกะอย่างมาก แต่ตรรกะก็สามารถประยุกต์ใช้ได้กับปัญญาอื่นได้เช่นกัน เช่น อัลกอริทึม Satplan ก็ใช้ตรรกะในการวางแผน และการเรียนรู้ของเครื่องบางวิธีก็ใช้การโปรแกรมตรรกะเชิงอุปนัย

วิธีทางความน่าจะเป็นและการให้เหตุผลบนความไม่แน่นอน (probabilistic methods for uncertain reasoning)

ปัญหาหลายอย่างทางปัญญาประดิษฐ์ (ในการให้เหตุผล วางแผน เรียนรู้ รับรู้ และหุ่นยนต์) ต้องมีเอเยนต์ที่คอยจัดการกับความไม่สมบูรณ์หรือความไม่แน่นอนของข้อมูล นักวิจัยด้านปัญญาประดิษฐ์ได้คิดค้นเครื่องมือหลายอย่างที่มีประสิทธิภาพเพื่อแก้ไขปัญหาเหล่านี้โดยใช้วิธีทางทฤษฎีความน่าจะเป็นและเศรษฐศาสตร์
เครือข่ายแบบเบย์ เป็นเครื่องมือทั่วไปเครื่องมือหนึ่งที่สามารถใช้แก้ปัญหาได้หลายปัญหา ไม่ว่าจะเป็น การให้เหตุผล (ใช้อัลกอริทึมการอนุมานแบบเบย์) การเรียนรู้ (ใช้อัลกอริทึมหาค่าคาดหวังที่มากที่สุด) การวางแผน (ใช้เครือข่ายการตัดสินใจ) และการรับรู้ (ใช้เครือข่ายแบบเบย์พลวัต) อัลกอริทึมทางความน่าจะเป็นก็สามารถใช้กับการกรอง การทำนาย การปรับให้ราบเรียบ และการหาคำอธิบายสายข้อมูล ช่วยระบบรับรู้ให้สามารถวิเคราะห์กระบวนการต่าง ๆ ที่เกิดขึ้นและเปลี่ยนแปลงตลอดเวลาได้ (เช่น แบบจำลองมาร์คอฟซ่อนเร้น หรือ ตัวกรองคาลมาน)
ในทางเศรษฐศาสตร์ แนวคิดหนึ่งที่ถือเป็นหัวใจหลักคือ ประโยชน์ สำหรับปัญญาประดิษฐ์ เราสามารถนำค่าของประโยชน์มาวัดได้ว่าของบางอย่างจะมีค่าต่อเอเยนต์ทรงปัญญาได้อย่างไร นักวิทยาศาสตร์ได้พัฒนาเครื่องมือคณิตศาสตร์ที่แม่นยำเพื่อวิเคราะห์ว่าเอเยนต์จะตัดสินใจและวางแผนได้อย่างไร โดยใช้วิธีของ Markov เครือข่ายการตัดสินใจแบบพลวัต ทฤษฎีเกม เป็นต้น

การจัดหมวดหมู่และการเรียนรู้ทางสถิติ (classifiers and statistical learning methods)

การประยุกต์ใช้ปัญญาประดิษฐ์ที่ง่ายที่สุด อาจอยู่ในรูปแบบของ การจัดหมวดหมู่ ซึ่งเป็นการทำงานที่ใช้การจับคู่รูปแบบที่พบเข้ากับสิ่งที่ใกล้เคียงที่สุด การจับคู่นั้นขึ้นอยู่กับตัวอย่างที่สอน จึงทำให้เป็นหัวข้อที่น่าสนใจมากในการประยุกต์ใช้ปัญญาประดิษฐ์ ตัวอย่างสอนเหล่านี้อาจจะมาจากการสังเกตการณ์หรือเป็นรูปแบบที่ชัดเจน ในการเรียนรู้แบบมีผู้สอนนั้น รูปแบบแต่ละอย่างจะถูกจัดกำหนดให้อยู่ในประเภทบางประเภทหรือกลุ่มบางกลุ่ม การสำรวจข้อมูลและการระบุข้อมูลให้เข้ากับกลุ่มนั้นเรียกกันว่า เซ็ตข้อมูล เมื่อมีการสำรวจข้อมูลใหม่เข้ามา ข้อมูลใหม่จะถูกจัดกลุ่มตามตัวอย่างที่เคยสอนมาแล้ว
การจัดหมวดหมู่หรือกลุ่มนี้สามารถสอนกันได้หลายแบบ ไม่ว่าจะใช้วิธีการทางสถิติหรือทางการเรียนรู้ของเครื่อง วิธีการที่นิยมใช้ได้แก่ โครงข่ายประสาทเทียม วิธีเคอร์เนล support vector machine ขั้นตอนวิธีการค้นหาเพื่อนบ้านใกล้สุด k ตัว โมเดลผสมแบบเกาส์ การจัดหมวดหมู่แบบเบย์ใหม่ และต้นไม้การตัดสินใจ ประสิทธิภาพของแต่ละเครื่องมือนั้นขึ้นอยู่กับงานที่ทำแต่ละงานและคุณสมบัติของข้อมูลที่เข้ามา โดยทั่วไปแล้ว ไม่มีเครื่องมือใดที่ทำหน้าที่ได้ดีที่สุดบนทุกปัญหา

โครงข่ายประสาทเทียม

การศึกษาโครงข่ายประสาทเทียมเริ่มต้นขึ้นตั้งแต่ก่อนที่จะมีงานวิจัยทางด้านปัญญาประดิษฐ์จากผลงานของวอลเตอร์ พิตต์สและวอร์เรน แม็กคัลลอช นอกจากนี้ยังมีแฟรงก์ โรเซนแบลตต์ที่คิดค้นเพอร์เซปตรอน และพอล เวอร์โบส์ผู้คิดค้นอัลกอริทึมการแพร่กระจายย้อนกลับ
ประเภทของโครงข่ายนี้อาจะแบ่งเป็นแบบไม่เป็นวงวน และแบบเป็นวงวน โครงข่ายประสาทเทียมที่ได้รับความนิยมได้แก่เพอร์เซปตรอน โครงข่ายเพอร์เซปตรอนแบบหลายชั้น และโครงข่ายฟังก์ชันฐานรัศมี โครงข่ายประสาทเทียมสามารถปรับใช้งานได้กับการควบคุมที่ฉลาดเช่นกับหุ่นยนต์ หรือเพื่อการเรียนรู้ของเครื่องด้วยก็ได้เช่นกัน
นอกจากนี้ หากโครงข่ายประสาทเทียมมีความทรงจำเชิงเวลาแล้วก็สามารถจำสร้างแบบจำลองเชิงโครงสร้างและวิธีการของนีโอคอร์เทกซ์ของสมองได้ ซึ่งเป็นแนวคิดที่เป็นที่มาของสาขาการเรียนรู้เชิงลึกที่ได้รับความนิยมมากตั้งแต่กลางศตวรรษที่ 20 เป็นต้นมาจากผลงานของเจฟฟรีย์ ฮินตันและรูสลาน ซาลาคัตดินอฟ

ทฤษฎีควบคุม (control theory)

ทฤษฎีควบคุม เป็นลูกหลานของไซเบอร์เนติกส์ สามารถนำไปประยุกต์ใช้งานได้หลากหลาย โดยเฉพาะในทางวิทยาการหุ่นยนต์

ภาษา (lang

นักวิจัยทางปัญญาประดิษฐ์ได้พัฒนาภาษาพิเศษสำหรับงานวิจัย เช่น ภาษาลิสป์ และภาษาโปรล็อก

สาขาที่เกี่ยวข้องกับปัญญาประดิษฐ์

สาขาที่มีบทบาทมากในปัจจุบัน

วิทยาการหุ่นยนต์

  • การจะสร้างหุ่นยนต์ที่อาศัยอยู่กับมนุษย์ได้จริง ต้องใช้ความรู้ทางปัญญาประดิษฐ์ทั้งหมด นอกจากนั้นยังต้องใช้ความรู้อื่น ๆ ทางเครื่องกล เพื่อสร้างศีรษะให้หุ่นยนต์สามารถเคลื่อนไหวได้เช่นเดียวกับมนุษย์
  • ในวงการวิทยการหุ่นยนต์ เขาก็ถือว่าปัญญาประดิษฐ์เป็นสาขาของเขาเช่นกัน

ขั้นตอนวิธีเชิงพันธุกรรม

  • เป็นการประยุกต์นำแนวความคิดทางด้านการวิวัฒนาการที่มีอยู่ในธรรมชาติ มาใช้ในการแก้ปัญหาทางคณิตศาสตร์และคอมพิวเตอร์
  • เป็นขั้นตอนวิธีเชิงสุ่ม (stochastic) (ไม่ได้คำตอบเดิมทุกครั้งที่แก้ปัญหาเดิม)
  • มักประยุกต์ใช้ในปัญหาการหาค่าที่เหมาะสมที่สุด (optimization) ที่ไม่สามารถแก้ได้ด้วยวิธีมาตรฐานทางคณิตศาสตร์อย่างมีประสิทธิภาพ
  • แนวคิดที่นำเอาหลักการวิวัฒนาการมาใช้นี้ มีรูปแบบอื่นอีกหลายรูปแบบ เช่น การโปรแกรมเชิงพันธุกรรม (genetic programming) และ evolution strategy อย่างไรก็ตามเทคนิคเหล่านี้มีแนวความคิดหลักเหมือนกัน ต่างกันในรายละเอียดปลีกย่อยเท่านั้น

โครงข่ายประสาทเทียม

ชีวิตประดิษฐ์ (artificial life)

  • เป็นการศึกษาพฤติกรรมของชีวิตเทียมที่เราออกแบบและสร้างขึ้น

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

ผู้จัดทำโครงงาน

ชื่อผู้จัดทำโครงงาน นางสาวพิชญ์สินี คงบุ่งคล้า เลขที่ 27 นางสาวพีรพร โกศการิกา เลขที่ 28 นางสาวมณฑกา โมราขาว เลขที่ 29 ชั้นมัธย...